Mark schemes

Q1.

$$
\begin{aligned}
& \sin 45=\frac{\sqrt{2}}{2} \text { or } \frac{1}{\sqrt{2}} \\
& \text { or } \tan 45=1 \text { or } \frac{1}{1} \\
& \text { or } \tan 60=\sqrt{3} \text { or } \frac{\sqrt{3}}{1}
\end{aligned}
$$

oe
stated or in correct place in expression or implied by multiplier of 2 or 4
$\sin 45=\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$
and $\tan 45=1$ or $\frac{1}{1}$
and $\tan 60=\sqrt{3}$ or $\frac{\sqrt{3}}{1}$
oe
stated or in correct place in expression or implied by multiplier of 2 or 4
eg $\frac{2 \times \frac{1}{\sqrt{2}}-1}{4 \times \frac{\sqrt{3}}{1}}$
$\frac{\sqrt{2}-1}{4 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
oe rationalisation of their denominator
eg $\frac{\frac{2}{\sqrt{2}}-1}{4 \sqrt{3}} \times \frac{4 \sqrt{3}}{4 \sqrt{3}}$
$\frac{\sqrt{6}-\sqrt{3}}{12}$

> oe in the form $\frac{\sqrt{6 a^{2}}-\sqrt{3 a^{2}}}{12 a}$ where A is a positive integer eg $\frac{\sqrt{24}-\sqrt{12}}{24}($ when $a=2)$

Additional Guidance

$\frac{2 \times \frac{1}{\sqrt{2}}-1}{4 \sqrt{3}}$ or $\frac{\sqrt{2}-1}{4 \sqrt{3}}$ or $\frac{\sqrt{2}-1}{\sqrt{48}}$
$\frac{\sqrt{48}(\sqrt{2}-1)}{\sqrt{48} \sqrt{48}}$ or $\frac{\sqrt{48}(\sqrt{2}-1)}{48}$

B1B1 awarded, incorrect simplification, then correct method to rationalise

Q2.
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ or $\tan 60^{\circ}=\sqrt{3}$
M1
$4 \sqrt{3}$
$\sqrt{48}$ or $k=48$
ft value seen in the form $a \sqrt{b}$ where a and b are integers >
1
B1ft

Q3.
(a) $35^{2}+30^{2}$
$\sqrt{35^{2}+30^{2}}$
$46(.097 \ldots)$ or $5 \sqrt{85}$ or $\sqrt{2125}$
(b) $35^{2}+30^{2}+87^{2}$ or their $46^{2}+87^{2}$
or $2125+87^{2}$
$\sqrt{35^{2}+30^{2}+87^{2}}$
or $\sqrt{\text { their } 46^{2}+87^{2}}$
or $\sqrt{2125+87^{2}}$
or $\sqrt{9694}$
98.(...) and No

Q4.
$10^{2}+10^{2}$ or 200
$5^{2}+5^{2}$ or 50
oe
$\sqrt{\text { their } 200}$
$\sqrt{\text { their } 50}$
or $10 \sqrt{2}$
or $5 \sqrt{2}$
or $[14,14.2]$
or [7, 7.1]
oe
$\tan 68=\frac{h}{\text { their } 7.1}$
their $7.1 \times \tan 68$
or [17.3, 17.6]
M1dep
$\frac{1}{3} \times 10 \times 10 \times$ their $[17.3,17.6]$
M1dep
$[576,587]$ or 590

Q5.
(a) Alternative method 1

$$
\begin{aligned}
& 17^{2}-(16 \div 2)^{2} \text { or } 17^{2}-8^{2} \text { or } 289-64 \\
& \quad \text { Correct use of Pythagoras' theorem } \\
& \text { eg } \quad 8^{2}+15^{2}=17^{2} \text { or } 64+225=289
\end{aligned}
$$

$\sqrt{17^{2}-(16 \div 2)^{2}}(=15)$ or $\sqrt{17^{2}-8^{2}}(=15)$ or $\sqrt{289-64}(=15)$
Correct use of Pythagoras' theorem using a square root

Alternative method 2

$$
\sin E=\frac{8}{17} \text { or } \cos A=\frac{8}{17} \text { or } E=28 \text {.(..) or } A=61.9(\ldots) \text { or } 62
$$

and
$\cos 28 .(\ldots)=\frac{E M}{17}$ or $\tan 28 .(\ldots)=\frac{8}{E M}$ or $\sin 61.9(\ldots)=\frac{E M}{17}$ or $\tan 61.9(\ldots)=\frac{E M}{8}$
$17 \cos 28 .(\ldots)$ or $8 \div \tan 28$.(...) or $17 \sin 61.9(\ldots)$ or $8 \tan 61.9(\ldots)$

Additional Guidance
$8,15,17$ on their own
$E M^{2}=289-64=225, E M=15$
(b) Alternative method 1
$30^{2}+(16 \div 2)^{2}$ or $30^{2}+8^{2}$ or 964
oe
$\sqrt{\text { their } 964}$ or $2 \sqrt{241}$ or $[31,31.1]$
oe
CM
$\tan x=\frac{15}{\text { their }[31,31.1]}$
oe eg $90-\tan ^{-1} \frac{\text { their [31,31.1] }}{15}$
Dep on M1 M1
[25.7, 26]

Alternative method 2
$30^{2}+17^{2}$ or 1189
oe
$\sqrt{\text { their } 1189}$ or $[34.4,34.5]$
oe CE
$\sin x=\frac{15}{\text { their[34.4, 34.5] }}$
oe eg $90-\cos ^{-1} \frac{15}{\text { their }[34.4,34.5]}$
or $\frac{\sin x}{15}=\frac{\sin 90}{\text { their }[34.4,34.5]}$
Dep on M1 M1
M1dep
[25.7, 26]

Alternative method 3

$30^{2}+(16 \div 2)^{2}$ or 964 or $30^{2}+17^{2}$ or 1189
oe
$\sqrt{\text { their } 964}$ or $2 \sqrt{241}$ or $[31,31.1]$ or $\sqrt{\text { their } 1189}$ or $[34.4,34.5]$ oe CM CE
$\cos x=\frac{\text { their }[31,31.1]}{\text { their }[34.4,34.5]}$
oe eg $90-\sin ^{-1} \frac{\text { their }[31,31.1]}{\text { their }[34.4,34.5]}$
Dep on M1 M1
[25.7, 26]

Alternative method 4

$$
\begin{aligned}
& 17^{2}-(16 \div 2)^{2} \text { or } 225 \text { or } 30^{2}+(16 \div 2)^{2} \text { or } 964 \text { or } 30^{2}+17^{2} \text { or } 1189 \\
& \quad \text { oe } E M^{2} \\
& \quad C M^{2} \\
& C E^{2}
\end{aligned}
$$

$\cos x=\frac{\text { their } 964+\text { their } 1189-\text { their } 225}{2 \times \sqrt{\text { their } 964} \times \sqrt{\text { their } 1189}}$
oe
$\cos ^{-1} \frac{\text { their } 964+\text { their } 1189-\text { their } 225}{2 \times \sqrt{\text { their } 964} \times \sqrt{\text { their } 1189}}$
oe
Dep on M1 M1
[25.7, 26]

Q6.
Alternative method 1
$\sqrt{14^{2}+8^{2}}$ or $\sqrt{260}$
or $2 \sqrt{65}$ or $[16.1,16.125]$
AC

$$
\begin{array}{r}
\tan (x)=\frac{7}{\text { their } A C} \\
\text { oe }
\end{array}
$$

[23.4667, 23.5]

$$
\begin{aligned}
& \text { Alternative method } 2 \\
& \sqrt{14^{2}+8^{2}+7^{2}} \text { or } \sqrt{309} \\
& \text { or }[17.578,17.6] \\
& \qquad \begin{array}{l}
\text { EC } \\
\text { May be seen in stages } \\
\\
\quad A C^{2}+7^{2} \text { then square roots } \\
\text { Condone use of } 2 \sqrt{65}^{2} \text { for } A C^{2}
\end{array}
\end{aligned}
$$

$\sin (x)=\frac{7}{\text { their } E C}(\times \sin 90)$
or
$\cos (x)=\frac{\sqrt{8^{2}+14^{2}}}{\text { their } E C}$
$\cos (x)=\frac{8^{2}+14^{2}+\text { their } E C^{2}-7^{2}}{2 \times \text { their } \sqrt{8^{2}+14^{2}} \times \text { their } E C}$
Condone use of $2 \sqrt{65}^{2}$ for $A C^{2}$
[23.4667, 23.5]

Q7.
$60^{2}+80^{2}(=10000)$
or
$80^{2}+120^{2}(=20800)$
or
$60^{2}+120^{2}(=18000)$
100 (may be seen on diagram)
or
[144.2, 144.2221]
or
[134.1, 134.2]

$$
\begin{aligned}
& \sqrt{60^{2}+80^{2}+120^{2}} \\
& (=\sqrt{3600+6400+14400})
\end{aligned}
$$

oe eg1 $\sqrt{100^{2}+120^{2}}$
eg $2 \sqrt{10000+120^{2}}$
eg $3 \sqrt{24400}$ or $20 \sqrt{61}$
This mark implies M1 M1
[156, 156.205]

Q8.
(a) $\quad(A C=) \sqrt{10^{2}+6^{2}} \quad(=\sqrt{136})$
[11.66, 11.7]
$(A X=)$ their $A C \div 2$
(= $[5.8,5.85])$
($A X=) \sqrt{5^{2}+3^{2}}(=\sqrt{34})$ is M2
Do not allow their $A C$ to be 10

$$
\begin{aligned}
\tan (V A X)= & \frac{5}{\text { their } A X} \\
& \text { Dep on at least one } M \text { mark gained } \\
& (A V=) \sqrt{5^{2}+\text { their } A X^{2}}(=\sqrt{59}) \text { and } \\
& \sin (V A X)=\frac{5}{\text { their } A V}(\times \sin 90) \text { or } \\
& \cos (V A X)=\frac{\text { their } A X}{\text { their } A V} \text { or } \\
& \operatorname{correct~use~of~cosine~rule~in~triangle~VAX~} \\
& \text { Do not allow their } A X \text { to be their } A C
\end{aligned}
$$

[40.5, 40.8]
Allow 41 if correct method seen
SC3 Answer [0.707, 0.7115]
SC3 Answer [45.02, 45.293]
(b) $\quad \tan \quad V M Y=\frac{2}{5}$
oe
(M is midpoint of $R Q, Y$ is the centre of $P Q R S$))
[21.8, 21.80141]
Allow 22 if correct method seen

Q9.

$$
\frac{1}{3} \times 14 \times 8 \times h=336
$$

oe
$h=\frac{336 \times 3}{14 \times 8}$ or $h=9$
oe
$B X^{2}=7^{2}+4^{2}$
or $B D^{2}=14^{2}+8^{2}$
or $B X=\sqrt{65}$ or $B D=2 \sqrt{65}$
or $V B=\sqrt{146}$
oe

Identifies $V \hat{B} X$
oe
$\tan V \hat{B} X=\frac{\text { their } 9}{\text { their } \sqrt{65}}$

$$
\begin{aligned}
& \cos V \hat{B} X=\frac{\text { their } \sqrt{65}}{\text { their } \sqrt{146}} \\
& \text { or } \sin V \hat{B} X=\frac{\text { their } 9}{\text { their } \sqrt{146}}
\end{aligned}
$$

48 or 48.1 ...

Q10.
$\cos 36=\frac{A C}{13.3}$
oe
or $10.75 \ldots$ or 10.76
oe
$\tan C A T=\frac{9.6}{\text { their } 10.76}$
oe
41.7

Allow 42 with working

Q11.
$4^{2}+4^{2}$ or $16+16$ or 32
or $2^{2}+2^{2}$ or $4+4$ or 8
oe
$\sqrt{32}$ or $4 \sqrt{2}$ or $\sqrt{8}$ or $2 \sqrt{2}$
Allow use of decimals to $2 d p$ or better
$\cos x=\frac{\sqrt{8}}{6}$ or $0.47 \ldots$
oe
$\cos x=\frac{\sigma^{2}+32-\sigma^{2}}{2 \times 6 \times \sqrt{32}}$
[61.8, 61.9] or 62

